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Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q)
filtration of the central transitions of half-integer spins are evaluated numerically and experimentally.
They correlate directly detected single-quantum (1Q) coherences in the t2 domain with either of 1Q,
two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect ðt1Þ dimension. We
employ experimental 23Na and 27Al NMR on sodium sulfite and the natural mineral sillimanite
ðSiAl2O5Þ, in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2
at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D
spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing
internuclear proximities and quadrupolar tensor orientations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Background

There is a growing interest in designing and using techniques to
correlate NMR interaction parameters under magic-angle spinning
(MAS) conditions, where at least one of the participating nuclei
possesses half-integer spin [1,2]. A subset of this wide family of
solid state NMR methodologies targets the exploration of internu-
clear proximities/connectivities between quadrupolar nuclei of the
same species in inorganic materials: the homonuclear correlations
are established via spin–spin interactions mediated either through
space or chemical bonds. Recent reviews are given in [1,3].

Fig. 1 depicts three distinct 2D NMR protocols for correlating
the signals from quadrupolar nuclei in close spatial proximity.
They incorporate a pulse-block for exciting two-spin double-
quantum coherences (2QC) between the central transitions (CTs)
in a pair of dipolar-(re)coupled half-integer spins; such coher-
ences are henceforth abbreviated ‘‘2Q CT”. The MAS-diminished
dipolar interactions may partially be restored by using rf pulse
sequences conforming to the R-symmetry class [4–7], as described
in detail in our previous work on 2Q-recoupling of quadrupolar
nuclei [8–10]. In the numerical and experimental demonstrations
herein, we employ either of the R21

2R2�1
2 [8] or R21

4R2�1
4 [9] recou-

pling schemes. In both cases, the spin-S CT nutation frequency
ll rights reserved.
xCT
nut ¼ ðSþ 1=2Þ j cS j B1 obeys xCT

nut ¼ xr=2 during recoupling,
where cS is the spin magnetogyric ratio, B1 the rf amplitude,
xr ¼ 2p=sr the angular rotation frequency of the sample and sr

its rotational period. When sandwiched between two CT-selective
p=2-pulses, the recoupling pulse sequences generate approxi-
mately an effective 2Q dipolar Hamiltonian involving CT spin-oper-
ators S�j S�k multiplied by a scaled through-space dipolar coupling
constant bjk between the homonuclear spins j and k [8–10].
1.2. 2Q–1Q correlation scheme

A double-quantum filtering (2QF) procedure involves the exci-
tation of 2Q CT from z-magnetization for an interval sexc [11,12].
The reverse process, labeled by ‘‘2QCT ! Z” in Fig. 1, is performed
by repeating the same pulse train for srec, but phase-shifting all
rf pulses (including the bracketing pulses) by p=2. The 2QC excita-
tion and reconversion intervals need not necessarily be equal
[5,13]. The NMR signals are detected after a subsequent Z-filter
interval ðsZÞ and a p=2 read pulse. As distinct types of MQC may
exist in half-integer spin systems, either involving a single spin
or a pair of spins, we denote the 2QF process of the CTs of spin-pairs
by ‘‘2QFCT” (see Fig. 1). The fraction of initial longitudinal CT mag-
netization recovered after the 2QFCT event is denoted f 2QF

Z!Z and re-
ferred to as the 2QF efficiency. The 2QF scheme used herein only
differs from the traditional spin-1/2 procedure [11,12] in two re-
spects: (i) a CT-selective p-pulse is inserted between the 2Q CT exci-
tation and reconversion events [14]. It is phase-cycled to retain

http://dx.doi.org/10.1016/j.jmr.2010.02.007
mailto:mattias.eden@mmk.su.se
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr


a

b

c

Fig. 1. (a) 2Q–1Q, (b) 1Q–1Q[2QF] and (c) 3Q–1Q[2QF] 2D NMR correlation protocols employing 2QFCT for probing proximities between half-integer quadrupolar spins, with
their corresponding coherence-transfer pathways [40] shown beneath. Phase-cycle implementations that simultaneously allow all desired coherence transfers but reject all
undesirable ones are given in Ref. [10] for the experiment in (a) and in the SI for those of (b) and (c). The upper part of (a) depicts an alternative t1-sampling approach [14]
(discussed in Section 3.2). Symmetry-based R21

2R2�1
2 or R21

4R2�1
4 2Q-recoupling schemes are utilized for 2QFCT [8–10]. They are sandwiched between two CT-selective 90�-

pulses (illustrated throughout by black rectangles) of opposite rf-phases. Each rf pulse flip-angle is given in degrees, with the corresponding rf phase specified as the direction
of the rf field vector along a rotating-frame axis (subscripts x; y; �x; �y). All rf pulses in (a–c) are CT-selective, except for those driving the Z! 3Q and 3Q ! Z transfers in (c).
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exclusively the �2Q CT ! �2QCT pathways to block 2QC from the
satellite transitions (STs). (ii) As the 2Q-recoupling schemes
R21

2R2�1
2 and R21

4R2�1
4 lack the c-encoding property [12], two de-

lays s are inserted to arrange a total time-span of an even multiple
of rotational periods ðNsrÞ between the as-indicated time-points in
each of Fig. 1(a–c) [8].

By introducing a ‘‘t1” time interval incremented in steps of sr ,
the 2QFCT scheme converts into a 2Q–1Q correlation NMR experi-
ment, as first demonstrated for half-integer spins by Painter and
Duer [15]. The basic implementation of Fig. 1(a) was presented
by Mali and co-workers [14]. 2D Fourier transformation of the re-
corded data-set sðt1; t2Þ yields a 2D NMR spectrum that correlates
the indirectly detected 2Q CT frequencies xjk ¼ xj þxk (vertical
dimension; x1 coordinate) with their 1Q CT frequency components
xj and xk (x2 coordinate).

Here we present two alternative homonuclear 2D NMR correla-
tion techniques for quadrupolar spins—both invoking 2QFCT events,
but differing in the coherence orders evolved during t1—and com-
pare their relative merits and limitations with the 2Q–1Q scheme.
As opposed to the latter, the 2QFCT stage is appended to intervals of
1QCT or multiple-quantum coherence (MQC) evolution, as depicted
in Fig. 1(b) and (c), respectively. Throughout, reference to ‘‘MQC” in
the absence of a subscript ‘‘CT” implies a single-spin MQC.
1.3. 1Q–1Q 2QF correlation scheme

The rf pulse diagram of Fig. 1(b) correlates 1Q CT frequencies in
the indirect 2D spectral dimension with those of 2QFCT 1Q CT fre-
quencies in the direct dimension. It will onwards be referred to
as a 1Q–1Q[2QF] NMR experiment and constitutes the quadrupo-
lar-spin analog of existing spin-1/2 solid state NMR correlation
techniques incorporating a MQF ‘‘mixing” stage, as previously
demonstrated for M ¼ 2 [16] or M ¼ 3 [17] quantum coherences.
Close spatial j—k proximities are revealed as ‘‘cross-peaks” appear-
ing at a frequency combination ðx1;x2Þ ¼ ðxj;xkÞ in the 2D NMR
spectrum, meaning that the t2-detected 2QFCT signal of spin k orig-
inated from the t1-evolution of spin j. Refs. [3,16,18] highlight the
advantages of 2Q–1Q correlation experiments relative to 1Q–1Q
ones that invoke magnetization transfers during mixing [19–23]:
the 2QFCT stage of 2Q–1Q and 1Q–1Q[2QF] NMR acquisitions re-
moves all signals associated with isolated spins and equalizes the
detected signal amplitudes of spins j and k, in contrast with exper-
iments exploiting direct magnetization transfers [19–23]. Hence, a
1Q–1Q[2QF] experiment emphasizes the desirable NMR signals
that reflect internuclear proximities and reduces t1-noise associ-
ated with the largest (but uninformative) NMR peaks stemming
from non-exchanged magnetization in 1Q–1Q 2D spectra [16,18].
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Nevertheless, as for magnetization–exchange processes, unam-
biguous detection of j$ j and k$ k auto-correlations is precluded
by the unavoidable emergence of undesirable ðxj;xjÞ and ðxk;xkÞ
diagonal peaks in a 1Q–1Q[2QF] NMR spectrum for each j$ k cor-
relation [16,18]. This represents the main disadvantage with using
contracted 2Q excitation and reconversion events [Fig. 1(b)] in-
stead of arranging a t1-dependent 2QCT frequency-encoding as in
the 2Q–1Q protocol of Fig. 1(a).
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1.4. MQ–1Q 2QF correlation scheme

Compared to 1Q–1Q[2QF] NMR spectra, enhanced frequency-
dispersion of the peaks appearing along the indirect spectral
dimension is generally obtained by combining a spin-pair filter
with a MQ–1Q correlation experiment of half-integer spins; the
latter is commonly referred to as multiple-quantum MAS
(MQMAS) [24–26]. The resulting protocol is labeled MQ–1Q[2QF]
and its 3Q version is depicted in Fig. 1(c). The gray rectangular
blocks sandwiching the t1-interval represents a 3Q filter (3QF)
addressing individual quadrupolar spins. Several options exist for
implementing such coherence transfers [25,27–37]. The 2QFCT

stage is naturally introduced after the MQ ! Z conversion in a
Z-filter MQMAS experiment [38,39], as in previous 2D schemes
incorporating a mixing period for driving magnetization exchange
[19–23]. The present 3Q–1Q[2QF] pulse scheme is formed by
replacing the mixing pulses in the 3Q–1Q correlation technique
of Ref. [23] by a 2QFCT segment.

In general, a high-resolution (‘‘isotropic”) dimension is obtained
by subjecting the acquired MQMAS 2D data-set to a shear transfor-
mation [24,25,40]. This operation may be viewed as a rotation of
the second-order quadrupolar-broadened ridge such that it be-
comes aligned with the x2 spectral axis. The x1-projection of the
sheared 2D spectrum then displays one narrow peak per quadru-
polar site in the structure, provided that the latter is perfectly or-
dered. However, active magnetization exchange (or a 2QFCT

process, as in the present context) subsequent to the MQC-evolu-
tion introduces broad signal components along the ‘‘isotropic”
dimension: shearing then usually do not help the identification
of correlation signals and will not be used in the processing of
the MQ–1Q[2QF] spectra presented herein.

In the following, we provide a comprehensive comparison of the
various 2D NMR correlation experiments from the viewpoints of
signal sensitivity, spectral resolution and their relative merits in
revealing internuclear proximities/connectivities. This is addressed
primarily by numerically simulated 2D NMR spectra from pairs of
S ¼ 3=2 and 5/2, using different external magnetic fields (9.4 T,
14.1 T and 18.8 T), chemical shift-differences and relative orienta-
tions of the electric-field-gradient (efg, here called ‘‘quadrupolar”)
tensor orientations. The quadrupolar tensor is characterized by a
quadrupolar coupling constant CQ ¼ e2qQ=h and an asymmetry
parameter g ¼ ðVyy � VxxÞ=Vzz, where fVjjg denote its principal val-
ues. Tensor orientations are described by Euler angles
XK ¼ faK; bK; cKg [41], where K represents either the quadrupolar
(Q) or dipolar (DD) interaction. Experimental results are provided
by 23Na ðS ¼ 3=2Þ NMR on Na2SO3 and 27Al ðS ¼ 5=2Þ NMR on the
mineral sillimanite, SiAl2O5.
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Fig. 2. Experimental 3Q–1Q[2QF] 23Na NMR results from Na2SO3 undergoing
12.0 kHz MAS at B0 ¼ 9:4 T. The 2D spectra were recorded by the pulse scheme of
Fig. 1(c) in the absence (a) and presence (b) of 2QFCT. The NMR signals of the three
distinct 23Na sites are identified by Na1, Na2 and Na3 in the projections displayed in
(a). Each 2QCCTð23Naj—23NakÞ signal is assigned as jk ðj; k ¼ 1;2;3Þ in (b). (c)
Calculated 3Q–1Q[2QF] NMR spectrum (see Section 6).
2. Results for S = 3/2

2.1. Experiments: Na2SO3

An experimental demonstration of a 3Q–1Q[2QF] 23Na NMR
spectrum is shown in Fig. 2. It was acquired from a powder of
Na2SO3 at 9.4 T. Sodium sulfite comprises three distinct 23Na sites,
labeled 1, 2 and 3 and populated as 1:1:2. NMR parameters of
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Na2SO3 were first reported by Power [42]; here we use the slightly
modified values of Ref. [43]. All quadrupolar tensors are axially
symmetric ðg ¼ 0Þ. 23Na1 and 23Na3 have almost equal quadrupo-
lar coupling constants CQ � 1:1 MHz, whereas that of 23Na2 is very
small ð� 0:15 MHzÞ. The isotropic chemical shifts for sites 1 and 2
are nearly coincident at 5.6 ppm, while that of 23Na3 is around
zero. The closest homonuclear internuclear separation involves
23Na1–23Na2 ðbjk

=2p ¼ �286 HzÞ, but there is a larger number of
couplings among all other sites [43].

Fig. 2(a) displays an experimental 3QMAS spectrum of Na2SO3,
which reveals three well-separated 23Na NMR resonances. The
result by appending a 2QFCT stage is displayed in Fig. 2(b). The
signal separation is overall better in the 3Q–1Q[2QF] spectrum
compared to those of previous 2Q–1Q correlations recorded un-
der similar experimental conditions; e.g., see Refs. [8,43]. Besides
the 23Naj—23Naj ðj ¼ 1;2;3Þ signals, cross-peaks are visible be-
tween all distinct 23Na sites for the employed value
sexc ¼ 667 ls. The experiment is readily reproduced by the simu-
lation in Fig. 2(c).
2.2. Simulations

Fig. 3 shows numerically exact simulations of (a–c) 1Q–
1Q[2QF], (d–f) 2Q–1Q and (g–i) 3Q–1Q[2QF] correlation NMR
powder spectra at increasing external magnetic fields. Two
spins-3/2, labeled 1 and 2, were assumed with NMR interaction
parameters typical for 23Na. x2-projections of the 1Q–1Q[2QF]
spectra are displayed at the top of Fig. 3 (those of the other 2D
schemes are very similar). The 2QFCT second-order quadrupolar-
broadened powder patterns of both sites (particularly #2) mani-
fest distortions compared to the corresponding ‘‘ideal” 1D MAS
peakshapes. The degree of spectral alterations depends on the
particular dipolar recoupling method and its duration of applica-
tion ðsexcÞ, the spectrometer carrier frequency relative to the NMR
signal positions, as well as on the orientations of the interaction
tensors involved. The left signal portion of the powder pattern
is often enhanced compared to that of the right: for certain rela-
tive orientations of the quadrupolar and dipolar tensors, the low-
ppm spectral region is almost extinguished, as discussed further
in Section 5. As opposed to the narrow signal ridges deriving from
the 23Na–23Na pairs of Na2SO3 (Fig. 2), all 2D cross-peaks from the
present spin-pair are relatively broad: this reflects non-coincident
quadrupolar tensors.

For the given set of quadrupolar parameters and small isotropic
chemical shift difference of Diso ¼ 5 ppm, Fig. 3 shows that in the
absence of 3QMAS experimentation, an external magnetic field of
18.8 T is required to completely separate the NMR signals from
sites 1 and 2. However, owing to the interplay between quadrupo-
lar and chemical shifts, even 3QMAS fails to resolve the two signals
at B0 ¼ 9:4 T [Fig. 3(g)]. Hence, in this case, 1Q–1Q[2QF] and 3Q–
1Q[2QF] correlations provide comparable spectral resolution,
meaning that the former and much more signal-sensitive experi-
ment is preferred.

When focussing on the inter-spin proximity information pro-
vided by each correlation method, it should first be considered
what information is a priori available. If it is known that there
are two distinct quadrupolar sites, all 2D spectra in Figs. 3 and S1
(see Supporting Information, SI) unambiguously reveal the 1–2
proximities. However, if the precise number of sites is unknown,
the 3Q–1Q[2QF] results at 14.1 T and 18.8 T would simultaneously
provide the number of sites—through the presence of two diagonal
peaks—as well as revealing the 1–2 spatial proximity. The same
information is obtained from any 2D spectrum obtained at 18.8
T, but strictly not (unambiguously) from the rest of the 2D NMR
spectra obtained for the parameters used in Fig. 3.
3. Results for S = 5/2

3.1. Simulations

All essential features of 2D correlation spectra recorded by the
2Q–1Q or 1Q–1Q[2QF] techniques are captured by the previous
S ¼ 3=2 simulations. The main consequence when considering
half-integer spins S > 3=2, is a scaling of the second-order quadru-
polar shifts and the accompanying peak-broadening by
� ½2Sð2S� 1Þ��1. Small chemical shift differences among the quad-
rupolar sites remains as the primary obstacle for identifying the
various auto-correlation and cross peaks by 2QFCT-based 2D
experiments.

For S ¼ 5=2, however, the MQ–1Q[2QF] technique offers the pos-
sibility to perform either of M ¼ 3 or M ¼ 5 correlations: Fig. 4
focusses on comparing the resolution expected from 5Q–1Q[2QF]
experiments relative to that of 3Q–1Q[2QF] ones by numerically
calculated NMR spectra at B0 ¼ 9:4 T. The simulation parameters
are representative for two distinct 27AlO6 units in a network struc-
ture. The top panel of Fig. 4 illustrates the case of equal isotropic
chemical shifts, meaning that the NMR signal-separation rests so-
lely on the distinct isotropic quadrupolar shifts of sites 1 and 2.
Their 1QC NMR lineshapes display significant spectral overlap
(see the 1D MAS NMR spectra in Fig. 5). The 1–1 and 2–2 auto-cor-
relation peaks are separated from each other in the 3Q–1Q[2QF]
NMR spectrum of Fig. 4(a), which is unfortunately not obvious
due to severe overlap with their associated 1–2 cross-peaks. Hence,
this constitutes yet another case where a 3Q–1Q[2QF] acquisition is
not offering much improved spectral resolution compared to that of
a 1Q–1Q[2QF] spectrum (e.g., see Fig. 3). However, Fig. 4(b) reveals
a significant enhancement in the NMR signal separation by utilizing
a 5Q–1Q[2QF] experiment as the two main groups of resonances
from sites 1 and 2 are now well-resolved.

We next consider the same spin-pair, but introduce a chemical
shift difference of Diso ¼ 10 ppm (d1

iso ¼ 10 ppm; Fig. 4(c) and (d)).
This provides a markedly enhanced resolution in the 3Q–1Q[2QF]
spectrum, whereas that of the 5Q–1Q[2QF] experiment remains
similar to the previous case. The bottom row of 2D spectra in
Fig. 4 shows the result of keeping Diso ¼ 10 ppm, but employing
coinciding quadrupolar tensors.
3.2. Experiments: sillimanite

The mineral sillimanite represents one of the SiAl2O5 poly-
morphs. The structure is depicted in Fig. 6(a). It consists of chains
of edge-sharing AlO6 octahedra (along the c-axis) that cross-link
chains of alternating (Si,Al)O4 tetrahedra. The SiO4 : AlO4 : AlO6

populations relate as 1:1:1 and the structure comprises directly
connected AlO4–AlO6 and AlO6–AlO6 polyhedra. The 27Al MAS
NMR spectrum of Fig. 6(b) manifests two relatively broad powder
NMR peakshapes, associated with CQ -values of 6.7 MHz and
8.8 MHz for 27Al in tetrahedral and octahedral coordination,
respectively [44].

Table S1 summarizes the number of 27Al–27Al internuclear con-
tacts over a radius of 5.2 Å. When simultaneously considering the
sizes of coupling constants and the number of dipolar interactions,
the strongest internuclear contacts are those between 27AlO4–
27AlO6 and 27AlO6–27AlO6 polyhedra. Fig. 6(c) shows a
1Q–1Q[2QF] spectrum recorded by using one completed R21

4R2�1
4

sequence for 2QFCT. The strong Al(IV)–Al(VI) contacts give clearly
visible cross-peaks. The dominance of these connectivities are con-
firmed by the corresponding 2Q–1Q correlation spectrum in
Fig. 6(d), which also reveals Al(IV) auto-correlations over Al–O–
Si–O–Al motifs. This 2D ridge is emphasized visually due to its
narrowness. The total 27Al 2QFCT efficiency was 2.7% and peak inte-
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DD ¼ ð0; 0;0Þ; X
1
Q ¼ ð0;90� ;0Þ; X2

Q ¼ ð0;90� ;90�Þ.
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grations gave the following approximative estimates of the corre-
lation intensities: AlO4—AlO4 : AlO4 � AlO6 : AlO6 � AlO6 � 0:07 :

0:78 : 0:15. The SI discusses possible reasons for the unexpectedly
weak 2QCTðAlO6—AlO6Þ correlations.

For consistency, both 2D acquisitions of Fig. 6 used rotor-syn-
chronized t1-incrementation, despite that the 1Q–1Q[2QF] experi-
ment allows for arbitrary sampling. The required span of Nsr

between the 2QCT excitation and reconversion events constitutes
the primary drawback of the 2Q–1Q experiment compared to the
other correlation strategies of Fig. 1. This restricts the t1-sampling
to avoid an undesirable spinning sideband formation along the
indirect 2Q–1Q spectral dimension (see [8,14,45], for details).
Ref. [14] introduced an approach to circumvent folding by splitting
up the t1 interval into kt1 and ð1� kÞt1 segments ð0 6 k 6 0:25Þ
[see Fig. 1(a)]. This scales each 2Q CT frequency by ð1� 2kÞ [14],
but has two disadvantages: (i) The spectral resolution in the



0 -20 -40

40

20

0

-20

-40

40

20

0

-20

-40

120

80

40

120

80

40

0 -20 -40

120

80

40

40

20

0

-20

-40

1Q dimension [ppm]

M
Q

 d
im

en
si

on
 [p

pm
]

M
Q

 d
im

en
si

on
 [p

pm
]

M
Q

 d
im

en
si

on
 [p

pm
]

1Q dimension [ppm]

a b

c d

e f

Δ =0iso

5Q-1Q[2QF]

Δ =10 ppmiso

Δ =0iso

Δ =10 ppmiso

Δ =10 ppmiso
colinear 

Δ =10 ppmiso
colinear 

3Q-1Q[2QF]

1

2

1

2

1

2

1

2

2

1

Fig. 4. Numerically simulated 3Q–1Q[2QF] (left panel) and 5Q–1Q[2QF] (right panel) spectra of S ¼ 5=2 spin-pairs at B0 ¼ 9:4 T and xr=2p ¼ 20:0 kHz. A Larmor frequency of
27Al ðx0=2p ¼ �104:288 MHzÞ was assumed for the two spins 1 and 2, together with the following parameters: b12

=2p ¼ �100 Hz; fC1
Q ; C

2
Qg ¼ f3:75;5:0g MHz;

fg1;g2g ¼ f0;0:50g; X12
DD ¼ ð0;0;0Þ. Isotropic chemical shifts were varied as (a, b) fd1

iso; d
2
isog ¼ f0; 0g ppm and (c–f) fd1

iso; d
2
isog ¼ f10;0g ppm. The quadrupolar tensor

orientations were X1
Q ¼ ð0;40�; 0Þ; X2

Q ¼ ð0;75�;60�Þ, except in (e and f) that used parallel tensors: X1
Q ¼ X2
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2Q-dimension is reduced. (ii) Spinning sidebands from anisotropic
interactions do no longer appear folded exactly at the center-
peaks. An interaction-scaling factor of 0.7 ðk ¼ 0:15Þ was used to
record the data of Fig. 6(d). Despite this precaution, the spectral
window of xr=2p ¼ 16:5 kHz was not sufficiently large to prevent
folding of some 2Q CT(AlO6-AlO6) signals.
4. Signal sensitivity and 2D peak amplitudes

4.1. 1Q–1Q[2QF] and 2Q–1Q correlations

A 2QF process unavoidably gives signal losses from powders.
The transfer efficiency from a source density operator qS to a target
ensemble state qT through 2QCT is given by a transfer function
f 2QF
qS!qT

, defined formally as f 2QF
qS!qT

¼ TrfqSqTg=Trfq2
Sg, where Tr{. . .}

denote the trace operation. We refer to Ref. [17] for further details.
Throughout, we neither indicate the dependence of f 2QF
qS!qT

on sexc

and srec, nor on the spatial orientation of the crystallite.
Assuming an ensemble of spin-pairs prepared with equal longi-

tudinal CT polarizations of the two spins, qS ¼ SCT
z ¼ SCT

jz þ SCT
kz , the

efficiency of the transfer SCT
z !2QFCT SCT

z is

f 2QF
Z!Z ¼

Tr SCT
z VSCT

z V y
n o

Tr SCT
z SCT

z

n o ; ð1Þ

where the operator V accounts for the excitation and filtering
through 2QCT. For two coupled spins-1/2 in a powder, the 2Q-recou-
pling techniques employed herein offers a theoretical optimum 2QF
efficiency of 52% [10,12]. However, for 2QFCT of half-integer spin-
pairs, the experimental efficiencies are in practice much lower, typ-
ically f 2QF

Z!Z < 0:1 for S ¼ 3=2 and f 2QF
Z!Z < 0:05 for S ¼ 5=2 [3,8]. Equal

transfer efficiencies result for each spin j and k; f 2QF
Z!jz ¼ f 2QF

Z!kz, as well
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as between any source spin and target spin, i.e., SCT
pz !

2QFCT

SCT
qz ðp; q ¼ j; kÞ [16,18,40]:

f 2QF
jz!jz ¼ f 2QF

jz!kz ¼ f 2QF
kz!jz ¼ f 2QF

kz!kz ¼ 2f 2QF
Z!jz ¼ 2f 2QF

Z!kz ¼ f 2QF
Z!Z ð2Þ

Eqs. (2) have the following practical consequences: (i) In the 1Q–
1Q[2QF] NMR spectrum, four equally intense peaks appear
[16,18]. (ii) The 2QCTðj� kÞ coherence signals appearing in the
2Q–1Q spectrum at the x2-frequencies xj and xk are associated
with equal integrals f 2QF

Z!jz ¼ f 2QF
Z!kz

� �
.

4.2. MQ–1Q[2QF] correlations

When assessing the 2D NMR amplitudes from a MQ–1Q[2QF]
correlation experiment, it is necessary to account for a non-uni-
form distribution of longitudinal CT-polarization between the
two spins of each pair, since the (single-spin) MQF efficiency

f MQF
jz!jz

� �
of a given quadrupolar site depends on its associated quad-

rupolar interaction-strength and generally diminishes for increas-
ing value of CQ [25,28]. In Fig. 7(a) for instance, the integrated
3QF signal from site 2 is only 68% of that from site 1, as opposed
to the simulated 2D spectrum of (b) that assumed perfect
Z! 3Q and 3Q ! Z transfers (compare the x1 projections of the
2D spectra). Further, alterations in the lineshapes may be observed
[31,32,36]. However, the projections of Fig. 7(a, b) reveal very sim-
ilar peakshapes. Hence, (here) the gross consequence of the 3QF
stage is a scaling of the NMR signal from each quadrupolar site,
depending on its associated CQ -value. On the other hand,
distortions are clearly visible around the regions of the left spectral
singularities stemming from both quadrupolar sites in the 5Q–
1Q[2QF] spectra [compare the x2-projections in Fig. 5(c,d) and
(e,f)]. The dependence of the 3QF or 5QF processes on the quadru-
polar parameters may be reduced by utilizing various options for
driving the coherence transfers [27–37].

For MQ–1Q[2QF] experiments, the overall transfer efficiency
f eff
Z!Z

� �
of the schematic process

Sjz þ Skz !
MQF

f MQF
jz!jzS

CT
jz þ f MQF

kz!kzSCT
kz !

2QFCT f eff
Z!Z SCT

jz þ SCT
kz

� �
ð3Þ

needs to be considered. It starts from total longitudinal polarization
of both spins, which is first transferred to longitudinal CT polariza-
tion and subsequently filtered through 2QCT. This gives

f eff
Z!Z ¼

1
2

f MQF
jz!jz þ f MQF

kz!kz

� �
f 2QF
Z!Z ; ð4Þ

with f 2QF
Z!Z given by Eq. (1). The combination of two subsequent MQF-

processes provides a net transfer efficiency given by a product of
two (small) numbers f MQF

pz!pz and f 2QF
Z!Z . Often, this results in very poor

S/N in MQ–1Q[2QF] NMR experiments and constitutes a major prac-
tical limitation. For instance, a 3Q–1Q[2QF] spectrum recorded from
sillimanite (not shown) did not permit unambiguous detection of
the cross-peaks. On the other hand, Na2SO3 (Fig. 2) represents a
favorable case where both MQF stages are relatively efficient, as dis-
cussed in the SI.

We now consider the 2D peak amplitude apq in a MQ–1Q[2QF]
NMR spectrum, i.e., the peak stemming from MQC evolution during
t1 of spin p combined with 1Q CT evolution of spin q during t2. It ap-
pears at a 2D coordinate xpq, with p; q ¼ j; k and

ajj ¼ ajk �
1
4

f MQF
jz!jzf 2QF

Z!Z

akj ¼ akk �
1
4

f MQF
kz!kzf

2QF
Z!Z

ð5Þ

Hence, despite that initially f MQF
jz!jz–f MQF

kz!kz, the signal intensities of the
two spins j and k passing through the 2QCT filter become equalized;
the x2-projection of the 2D spectrum comprises two components
with integrals ðajj þ akjÞ ¼ ðajk þ akkÞ ¼ f eff

Z!Z=2 [see Eqs. (4) and (5)].
However, the integrals of the two cross-peaks are generally not
equal ðajk–akjÞ, as each is weighted by its respective single-spin
MQF efficiency, f MQF

jz!jz or f MQF
kz!kz. The integral of the auto-correlation

signal at xjj is equal to that of its cross-peak at the frequency xjk,
but distinct from that at xkj [Eq. (5)]. All these features are verified
by the 2D spectrum of Fig. 7(c). It was obtained using an ‘‘idealized”
2QFCT process that phenomenologically arranged a uniform filtering
efficiency for all crystal orientations in the powder, but emulated
the distinct 3QF efficiencies of sites 1 and 2 by using initial site pop-
ulations of 0.595:0.405. Note that the x2-projection of Fig. 7(c)
agrees well with both of (a) and (b), while its x1-projection repro-
duces the corresponding numerically exact result in (a).

The discussion of peak amplitudes thus far ignored potential
2QFCT contributions from equivalent spins. The frequency position
of the 2QCTðj—jÞ peak coincides with the ‘‘diagonal” signal-portion
of the 2QCTðj� kÞ correlation. These 2D peaks superimpose to a net
integral of ajj

jj þ ajk
jj at the coordinate xjj (superscripts label the

respective spin-pairs).

5. Double-quantum excitation dependence on tensor
orientations

An intrinsic feature of MQF processes is their tendency to dis-
tort MQF 1Q CT NMR powder peak-shapes due to the dependence
on the crystallite (dipolar vector) orientation relative to the mag-
netic field direction. The 2FQCT stage generally induces a strong
peak-shape dependence on the relative orientations between pairs
of quadrupolar/quadrupolar as well as dipolar/quadrupolar tensors
[15,43]. This is manifested by the 2D correlation spectra of
Fig. 4(c,d) and (e,f), whose underlying spin parameters only differ
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in the relative orientations of the dipolar and quadrupolar tensors.
The spectra of (e) and (f) were generated using coincident direc-
tions of both quadrupolar tensors and the 1–2 dipolar vector. This
scenario strongly attenuates the right singularity (‘‘horn”) of each
second-order quadrupolar-broadened powder pattern, which is
clearly manifested by the x2-projections shown in Fig. 5 [e.g., com-
pare (c) with (g) and (f) with (j)]. In Fig. 2, the diminished intensity
at the right spectral portion of the Na1–Na2 cross-peak also signi-
fies coinciding quadrupolar and dipolar vectors [43].

Experimental peakshapes may only be faithfully reproduced by
numerical simulations that explicitly account for the dipolar recou-
pling process, as demonstrated in our previous analysis of 2Q–1Q
correlations [43]. This is evidenced from the 2D spectra of
Figs. 7(c) and 8(a): whereas the relative 2D peak integrals are in
excellent agreement (see Section 4.2), the peakshape-features differ
substantially. Those of the numerically exact spectrum of Fig. 8(a)
are distorted when using coincident interaction tensors. Fig. 8 ex-
plores the cross-peak-dependence further when varying the dipo-
lar vector direction but keeping fixed (and parallel) quadrupolar
tensors.

The 2QFCT-altered peak-shapes allow determinations of the
absolute quadrupolar tensor orientations (in the crystal frame)
by using 2QFCT techniques coupled with exact numerical simula-
tions [43]. This constitutes one advantage of using 2Q–1Q or
MQ–1Q[2QF] correlation protocols compared to those relying on
magnetization transfers over long intervals, as in Refs. [19–22].
However, this favorable feature is currently plagued by two major
practical obstacles: (i) Due to the inherently low signal sensitivity
following application of 2QFCT, particularly so for MQ–1Q[2QF]
experiments that involves an additional MQF event, long experi-
mental acquisition times are required to achieve reasonable S/N
for accurate tensor-orientation analyses. (ii) The numerically exact
2D spectral simulations are extremely time-consuming, which lim-
its the orientational space of tensor orientations that may realisti-
cally be explored by currently available standard computer
resources. Accurate analyses of coupled S ¼ 5=2 appear at present
to be out of reach. Both experimental and numerical obstacles are
anticipated to be alleviated by future methodological advances.

Considering (i) and (ii), we recommend to (1) first estimate the
relative orientations between the quadrupolar tensors based on an
experimental 2D spectrum obtained from any of the techniques in
Refs. [19–23] that employ long mixing intervals, thereby allowing
for rapid spectral simulations by omitting the dipolar recou-
pling stage. (2) Whenever experimental S/N permits, a subsequent
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analysis of 2Q–1Q, 1Q–1Q[2QF] or MQ–1Q[2QF] spectra is pursued
to fixate the quadrupolar tensor orientations by deducing their rel-
ative dipolar vector direction, parametrized by Xjk

DD and restricted
to two fitting parameters bjk

DD; c
jk
DD

� �
.

6. Materials and methods

6.1. Experimental

Experiments were performed at 9.4 T using a Varian/Chemag-
netics Infinity-400 spectrometer and full 4 mm zirconia rotors.
All experiments and simulations used hard pulses at an rf nutation
frequency j cS j B1=2p ¼ 110 kHz for (single-spin) MQF processes
[25–27]. 23Na and 27Al chemical shifts are given relative to Na-
Cl(aq) and AlðNO3Þ3ðaqÞ, respectively. Hypercomplex processing
[40] was employed in all 2D experiments and simulations. NMR
spectra were normalized to unity maximum 1D or 2D amplitude
(except for Fig. 7).

The 3Q–1Q and 3Q–1Q[2QF] acquisitions of Na2SO3 were car-
ried out under identical experimental conditions at
xr=2p ¼ 12:0 kHz. 2QFCT used R21

2R2�1
2 for sexc ¼ srec ¼ 667 ls.

3QC excitation and reconversion pulses were 5.2 ls and 2.0 ls,
respectively, whereas CT-selective p=2 and p pulses operated at
xCT

nut=2p ¼ 6:6 kHz. The 3Q–1Q[2QF] acquisition resulted from
384 accumulated signal transients for each of 76 t1-increments,
using 1.5 s relaxation delays, Dt1 ¼ Dt2 ¼ sZ ¼ sr and N ¼ 4 (see
Fig. 1). Total acquisition time: 24 h. The ðt1; t2Þ data-set was
zero-filled to ð512	 2048Þ points and apodized by 50 Hz Gaussian
broadening in the t1-dimension. The lowest contour levels of Fig. 2
are set at 2% of the maximum 2D amplitude.

The natural sillimanite sample (Brandywine Springs, Delaware,
USA; catalog number NRM #18770189) was kindly provided and
characterized by Ulf Hålenius at the Swedish Museum of Natural
History. The phase purity and composition was verified by X-ray
powder diffraction and electron microprobe analysis, respectively.
Excellent agreement was found between nominal and analyzed
ðSi1:00Al2:00O5:00Þ compositions. The 2Q–1Q and 1Q–1Q[2QF] 27Al
NMR acquisitions at xr=2p ¼ 16:5 kHz used identical rf-pulse
parameters. Inversion and p=2 pulses operated at
xCT

nut=2p ¼ 22 kHz; 2QFCT employed one completed R21
4R2�1

4 cycle
for sexc ¼ srec ¼ 485 ls with N ¼ 2 and dcarrier ¼ �15 ppm. 26 pairs
of RAPT/FAM pulses [30,46] was used prior to the acquisitions of all
27Al 1D, 2Q–1Q and 1Q–1Q[2QF] MAS experiments
ðj cS j B1=2p � 110 kHz; sp ¼ 0:7 ls; CT-signal enhancement factor
2.2). Both 2D acquisitions used Dt1 ¼ sZ ¼ 60:61 ls and
Dt2 ¼ 15:15 ls with 1 s relaxation delays. Signal apodization em-
ployed Lorentzian (along t1) and shifted Lorentzian (along t2) de-
cays of 150 Hz (for 2Q–1Q data) and 200 Hz (for 1Q–1Q[2QF]).
Specific for 1Q–1Q[2QF] experiment: 2048 transients/t1-value; ac-
quired data-size ð62	 330Þ, zero-filled to (256	1024); total exper-
imental time: 71 h. Specific for 2Q–1Q acquisition: 1280
transients/t1-value; acquired data-size ð32	 280Þ, zero-filled to
ð128	 1024Þ; total experimental time: 23 h. The intensity plots
of Fig. 6 employed a logarithmic intensity incrementation from
the lowest levels of 0.75% (c) and 2.5% (d) of the maximum 2D
amplitude. Some levels are contoured for easier visualization.
6.2. Numerical simulations

1D and 2D NMR spectral calculations employed small-step
(<1 ls) integration of the Schrödinger equation [47] during t1

and t2 evolutions, as well as 2QFCT and MQF events (see exceptions
below). The simulations accounted for isotropic chemical shifts,
dipolar, first- and second-order quadrupolar interactions of the
given spin-pairs and rf sequences, except that (i) the CT-selective
p-pulse (Fig. 1) was not considered and (ii) the p=2-pulses bracket-
ing the 2Q-recoupling blocks were implemented as ideal CT-selec-
tive pulses. These simplifications, combined with rotor-
synchronized t1-sampling in all 2D simulations, allowed for a full
exploitation of the time-periodicity of the spin Hamiltonian to
minimize the number of explicitly integrated time-segments
[47]. The initial density operator was Sz for calculations of MQ–
1Q[2QF] spectra and SCT

z for those of 2Q–1Q and 1Q–1Q[2QF]
schemes. The CT-part of the Sþ operator was detected, using the
COMPUTE algorithm for optimal speed [48]. MQF events were
implemented by nulling all density matrix elements but those of
the relevant coherence order.

All MQ–1Q-based simulations arranged correlations of the
coherence orders f� j M j$ �1g. Between 160 and 200 t1-incre-
ments were explicitly calculated (zero-filled to 512 or 1024 points)
with 100–150 Hz Lorentzian apodization applied along each spec-
tral dimension. The results in Fig. 2(c) was obtained from the sum-
mation of 25 individual 2D spectra (see Ref. [43]). R21

4R2�1
4 with

sexc ¼ srec ¼ 800 ls was used for 2Q-recoupling in all simulations,
except that of Fig. 2(c). The single-spin MQF utilized hard pulses as
follows: fsexc; srecg ¼ f5:2;2:5g ls for 3QF of S ¼ 3=2; fsexc; srecg ¼
f3:6;1:2g ls for 3QF and {4.0, 2.0} ls for 5QF of S ¼ 5=2, respec-
tively. The rf carrier frequency was set at 0 ppm throughout, except
during t1-evolution of the 5Q–1Q[2QF] simulations in Fig. 4
ðdcarrier ¼ 14:38 ppmÞ. All other conditions and parameters are
listed in the figure captions.

Powder averaging was performed over 6044 three-angle ZCW
orientations [49,50], except for the 3Q–1Q[2QF] simulation of
Na2SO3 (3722 orientations). The calculations of 1D MAS spectra
and the idealized 3Q–1Q-based spectra in Fig. 7(b, c) employed a
two-angle ROSELEBh6535 set [51]. On a 3.0 GHz Intel Core CPU per-
sonal computer, a MQ–1Q[2QF] simulation typically lasted for
� 1 h for pairs of S ¼ 3=2 (Figs. 3 and S1) and for 12 h for
S ¼ 5=2 pairs (Figs. 4 and 8).
7. Concluding remarks

We have compared 1Q–1Q[2QF], MQ–1Q[2QF] and 2Q–1Q cor-
relation schemes for probing homonuclear quadrupolar spin-pairs.
Thanks to its combination of best signal sensitivity (which is, how-
ever, essentially paralleled by the 1Q–1Q[2QF] experiment) and
outstanding capabilities for detecting correlations between equiv-
alent spins, the 2Q–1Q protocol [14,15] shows promise to remain
as the best general-purpose experimental technique for establish-
ing internuclear proximities. However, its main problem compared
to the other correlation protocols is the requirement of using rotor-
synchronized t1-incrementation [45]. While such sampling im-
proves S/N by folding of all spinning sidebands onto the centerband
[44], the xr-limited spectral window is often insufficient to accom-
modate all second-order broadened 2Q CT signals: this necessitates
experimentation at high MAS frequencies and the unavoidable
need to use small-volume rotors and thereby compromising NMR
signal sensitivity.

The numerically simulated spin systems considered herein may
be viewed as relatively problematic cases concerning NMR signal
separation at B0 K 17 T. Nevertheless, only scenarios of two cou-
pled spins were considered, whereas often several quadrupolar
sites are present in experimentally interesting samples. Strong
overlap between two or several 2Q–1Q correlation signals may
then give ambiguous peak assignments, particularly around the
auto-correlation diagonal region of the 2D NMR spectrum (e.g.,
see Figs. 4 and 5 of Ref. [8]). Primarily in such cases, the MQ–
1Q[2QF] experiments gain value relative to the more sensitive
and intrinsically more informative 2Q–1Q acquisitions. Therefore,
we anticipate that MQ–1Q[2QF] experimentation will chiefly be
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of value to ascertain/preclude the presence of site-connectivities
for certain spin-pairs that produce unresolved signals in 2Q–1Q
NMR spectra, whereas the 2Q–1Q protocol is likely to constitute
the primary engine for determining inter-spin proximities.

The main practical limitation of the MQ–1Q[2QF] experiment is
its very poor signal sensitivity, given roughly as the product of the
individual filtering efficiencies of 2QCT and MQ coherences. How-
ever, here we employed the most straightforward implementa-
tions [25–27] for MQ excitation and reconversion. There should
be room for improvements [29–36]: particularly, soft-pulse added
mixing (SPAM) [37] and quadrupolar Carr–Purcell–Meiboom–Gill
(QCPMG) [52] techniques are expected to provide signal enhance-
ments. The latter has already been demonstrated in the context of
2Q–1Q correlations [53]. However, more substantial sensitivity
improvements are promised by combining 2QFCT with a satellite
transition MAS (STMAS) scheme [54–56]. Especially, 2QF-
STMAS[2QF]-type implementations are expected to offer artifact-
free NMR correlations and a reasonable signal sensitivity [54–56]
(only marginally lower than that of a 1Q–1Q[2QF] experiment).
The main drawbacks are its stringent demands for accurate ma-
gic-angle-setting and MAS stability [54,56].

An option for improving spectral resolution in any of the proto-
cols discussed herein is offered by spectral editing of individual
NMR signals by exploiting site-selectivity based on either chemical
shifts or quadrupolar coupling constants [57], analogously to pre-
vious demonstrations in the context of heteronuclear correlations
[58]. We are currently exploring such possibilities for the present
homonuclear NMR techniques.
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